Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Food Funct ; 14(14): 6482-6495, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37366083

RESUMO

As a dietary supplement, hyaluronic acid (HA) has exhibited appreciable immunomodulatory activity and an ameliorative effect on rodent colitis. However, its high viscosity is not only refractory to absorb through the gut, but also causes flatulence. In contrast to HA, hyaluronic acid oligosaccharides (o-HAs) can overcome the above-mentioned constraints, but their treatment effect still remains ill-defined contemporarily. Herein, the current study intends to compare the modulatory effects of HA and o-HA on colitis and assess the underlying molecular mechanism. We first showed that o-HA had a better preventive effect than HA in alleviating colitis symptoms, as evidenced by lower body weight loss, lower disease activity index scores, a lower inflammatory response (TNF-α, IL-6, IL-1ß, p-NF-κB), and more intact colon epithelial integrity in vivo. The best efficiency was observed in the o-HA treated group with a dosage of 30 mg kg-1. In an in vitro barrier function assay, o-HA exerted a better protective effect on the transepithelial electrical resistance (TEER), FITC permeability, and wound healing and modulated the expression of tight junction (TJ) proteins (ZO-1, occludin) in lipopolysaccharide (LPS)-stimulated Caco-2 cells. In summary, both HA and o-HA showed the potential to reduce inflammation and ameliorate intestinal damage in DSS-induced colitis and LPS-induced inflammation, but o-HA had improved outcomes. The results also provided a glimpse of the latent mechanism by which HA and o-HA enhanced intestinal barrier function via MLCK/p-MLC signaling pathway suppression.


Assuntos
Colite , Ácido Hialurônico , Humanos , Camundongos , Animais , Ácido Hialurônico/farmacologia , Células CACO-2 , Mucosa Intestinal/metabolismo , Lipopolissacarídeos/efeitos adversos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Inflamação/metabolismo , Proteínas de Junções Íntimas/metabolismo , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
3.
J Ethnopharmacol ; 308: 116258, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36806347

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Restoring the mucus layer is a potential strategy for treating ulcerative colitis (UC). Previous studies reported that a Chinese medicine formula Shaoyao Decoction (SYD) effectively improved UC. However, the role and mechanism of SYD in restoring the mucus layer are still vague. AIM OF THE STUDY: This study aimed to research the therapeutical effects and unravel the involved mechanism of SYD on DSS-evoked UC. MATERIALS AND METHODS: First, the constituents of SYD were detected by UPLC-QTOF-MS/MS. Then, the DSS-induced UC model was introduced to investigate the pharmacologic action and molecular mechanism of SYD on UC. Pharmacodynamic indicators were assessed including body weight, colon length, ulcerations, disease activity index (DAI), inflammatory cytokines and histological parameters. To investigate the integrality and functions of the mucous layer, AB-PAS stain and UEA-1 stain were used to evaluate the completeness of mucous layer, as well as the maturation of goblet cells (GCs). The bacterial invasion was detected by fluorescence in situ hybridization. As to mechanism exploration, the expressions of Notch/Hes1 pathway were investigated by using agonists in lipopolysaccharides (LPS) -stimulated LS174T cell. RESULTS: After modeling in mice, SYD remarkedly ameliorated the symptoms of mouse colitis, the expression of pro-inflammatory factors declined, and increased IL-10 expression was observed in SYD-treated mice. Besides, SYD repaired the structure of the mucus layer and prevented bacterial invasion. Mechanism investigation discovered that SYD promoted GCs differentiation by inhibiting the Notch pathway, which was consistent with the results in LPS-challenged LS174 cell. CONCLUSIONS: These findings demonstrated that SYD could restore the mucus layer to prevent UC via suppressing the Notch signaling pathway, which provided evidences for the UC treatment of SYD in the clinic.


Assuntos
Colite Ulcerativa , Colite , Medicamentos de Ervas Chinesas , Animais , Camundongos , Espectrometria de Massas em Tandem , Lipopolissacarídeos/farmacologia , Hibridização in Situ Fluorescente , Medicamentos de Ervas Chinesas/farmacologia , Colite/tratamento farmacológico , Colite Ulcerativa/tratamento farmacológico , Colo , Transdução de Sinais , Muco/metabolismo , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
4.
J Agric Food Chem ; 70(38): 11944-11957, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36120893

RESUMO

Dietary saponins have the potential to ameliorate atherosclerosis (AS). Gypenosides of Gynostemma pentaphyllum (GPs) have been used as functional foods to exhibit antiatherosclerotic activity. The present study aimed to explore the protective effect, underlying mechanism and active substances of GPs on AS in vivo and in vitro. Results demonstrated GPs administration reduced the serum concentrations of TC and LDL-C, upregulated the plasma HDL-C content, inhibited the secretion of ICAM-1, VCAM-1, and MCP-1, and alleviated vascular lesions in VitD3 plus high cholesterol diet-induced AS rats as well as reduced adhesion factors levels in ox-LDL-stimulated HUVECs, which was potentially associated with suppressing PCSK9/LOX-1 pathway. Further activity-guided phytochemical investigation of GPs led to the identification of five new dammarane-type glycosides (1-5) and ten known analogs (6-15). Bioassay evaluation showed compounds 1, 6, 7, 12, 13, and 14 observably reduced the expressions of PCSK9 and LOX-1, as well as the secretion of adhesion factors in injured HUVECs. Molecular docking experiments suggested that the active saponins of GPs might bind to the allosteric pocket of PCSK9 located at the catalytic and C-terminal domains, and 2α-OH-protopanaxadiol-type gypenosides might exert a higher affinity for an allosteric binding site on PCSK9 by hydrogen-bond interaction with ARG-458. These findings provide new insights into the potential nutraceutical application of GPs and their bioactive compounds in the prevention and discovery of novel therapeutic strategies for AS.


Assuntos
Aterosclerose , Saponinas , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , LDL-Colesterol , Gynostemma/química , Hidrogênio , Molécula 1 de Adesão Intercelular , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Pró-Proteína Convertase 9 , Ratos , Saponinas/química , Receptores Depuradores Classe E , Molécula 1 de Adesão de Célula Vascular
5.
Food Funct ; 13(16): 8717-8729, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35916206

RESUMO

This study aimed to compare the effects of different hydrolysates (named GKOS and MKOS) on constipated rats, which were obtained by degradation from konjac glucomannan by ß-glucanase and ß-mannanase, respectively. GKOS and MKOS were characterized and administered by gavage at 100 mg kg-1 to constipated rats. The variation of the gut flora, content of short-chain fatty acids (SCFAs), defecation function, gastrointestinal motility, and intestinal mucus secretion were determined to evaluate their regulatory effects on constipation. The results revealed the more prominent augmentation of species richness in MKOS than with GKOS. They also possessed diverse modulatory effects on different genera, such as Prevotella and Parabacteroides. Unexpectedly, there was no statistical divergence between GKOS and MKOS in defecation parameters, gastrointestinal transit, serum parameters, and mucous secretion. Overall, MKOS and GKOS exhibited differential regulatory function on gut microbiota in vivo, but with nearly consistent therapeutic effects on constipation.


Assuntos
Microbioma Gastrointestinal , Animais , Constipação Intestinal , Fezes , Mananas/farmacologia , Mananas/uso terapêutico , Ratos , beta-Manosidase/metabolismo , beta-Manosidase/farmacologia
6.
Food Funct ; 13(10): 5536-5546, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35531774

RESUMO

Diabetic nephropathy (DN) fibrosis is a major cause of end-stage renal disease with unsatisfactory therapy drugs and a low 5-year survival rate. There is a lack of specific and effective treatment drugs. In the present study, we report that asiatic acid (AA), a triterpenic acid found in Cyclocarya paliurus, has good anti-fibrosis activity both in vitro and in vivo. The STZ-induced diabetic model of rats was used to investigate the effects of AA on DN fibrosis. A 15-week AA treatment (10 mg kg-1 or 30 mg kg-1) markedly decreased urine albumin and blood urea nitrogen levels, and ameliorated increased mesangial matrix and glomerular fibrosis. HG + TGF-ß1-induced HK-2 cells were applied to evaluate the anti-fibrosis effect of AA. The results revealed AA selectively blocked the interaction of TGF-ß type I receptor (TGF-ßRI) with Smad3 by binding to TGF-ßRI, suppressed the subsequent phosphorylation and nuclear translocation of Smad3, and downregulated the major fibrotic protein expression of collagen I, fibronectin and a-smooth muscle actin (α-SMA), thereby switching the progress of epithelial-mesenchymal transition (EMT). Furthermore, the protein levels of LC3 and LAMP1 were significantly altered by AA administration, implying that the autophagy-lysosome system might be involved in DN fibrosis. However, the anti-fibrosis capacity of AA was partly counteracted by an autophagy-lysosome inhibitor (chloroquine). These findings indicate AA could decrease TGF-ß1 secretion and suppress tubulointerstitial fibrosis by directly inhibiting TGF-ßR1 and activating the autophagy-lysosome system. Altogether, AA may be a potential candidate drug for preventing DN fibrosis.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Juglandaceae , Animais , Autofagia , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Fibrose , Lisossomos/metabolismo , Triterpenos Pentacíclicos , Ratos , Receptor do Fator de Crescimento Transformador beta Tipo I , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
7.
J Ethnopharmacol ; 284: 114772, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34688801

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cyclocarya paliurus (CP) is a traditional Chinese herb and possesses a variety of biological activities including anti-hyperglycemia, anti-hyperlipidemia, antioxidant and anti-inflammation. Arjunolic acid (AA) is an abundant and bioactive ingredient in CP that shows significant protection against many metabolic diseases such as diabetic complication. Diabetic retinopathy (DR) is a serious complication of diabetes and may lead to vision loss. However, the protective effects and underlying mechanisms of AA against DR is not still understood. AIM OF THE STUDY: We aimed to investigate whether AA activates AMPK/mTOR/HO-1 regulated autophagy pathway to alleviate DR. MATERIALS AND METHODS: In the study, the STZ-induced diabetic model of rats was established, and AA with 10 and 30 mg/kg dosages was given orally for ten weeks to investigate their effect on retinal injury of DR. H2O2-induced ARPE-19 cells were applied to evaluate anti-apoptosis and anti-oxidant effect of AA. RESULTS: The results revealed that AA could prevent STZ-induced weight loss and increase the retinal thickness and nuclei counts. The level of HO-1 protein was upregulated both in vivo and in vitro. In addition, AA prevented retinal damage and cell apoptosis through the AMPK-mTOR-regulated autophagy pathway. Furthermore, anti-apoptosis capacity, as well as the expression of HO-1 and LC3 protein, were effectively locked by AMPK inhibitor dorsomorphin dihydrochloride (compound C). CONCLUSIONS: This finding implies that AA may be a promising candidate drug by protecting retinal cells from STZ-induced oxidative stress and inflammation through the AMPK/mTOR/HO-1 regulated autophagy pathway.


Assuntos
Adenilato Quinase/metabolismo , Retinopatia Diabética/tratamento farmacológico , Heme Oxigenase (Desciclizante)/metabolismo , Juglandaceae/química , Serina-Treonina Quinases TOR/metabolismo , Triterpenos/uso terapêutico , Adenilato Quinase/genética , Animais , Autofagia/efeitos dos fármacos , Diabetes Mellitus Experimental , Retinopatia Diabética/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase (Desciclizante)/genética , Masculino , Estrutura Molecular , Fitoterapia , Extratos Vegetais , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Triterpenos/química
8.
Phytomedicine ; 91: 153688, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34380071

RESUMO

BACKGROUNDS: Atherosclerotic Cardiovascular Disease (ASCVD) is defined as ischemic or endothelial dysfunction-various inflammatory diseases, which is mainly caused by excessive low-density lipoprotein cholesterol (LDL-C) in circulating blood. Gynostemma pentaphyllum is a traditional Chinese medicine, and total Gypenosides are used for the treatment of hyperlipidemia and to reduce circulating proprotein convertase subtilisin/kexin type 9 (PCSK9) level. However, which gypenoside involved in the modulation of PCSK9 expression is still unknown. PURPOSE: This study aimed to discover effective PCSK9 inhibitors from Gypenosides in accordance with the 2019 ESC/EAS guidelines. METHODS: HPLC was employed to determine major six components of Gypenosides. The inhibitory activity on secreted PCSK9 in HepG2 of six major compounds from Gypenosides were screened by ELISA. The level of low-density lipoprotein (LDL) receptor (LDLR) was determined by Flow cytometry and Immunofluorescence. The expression levels of PCSK9, LDLR and Sterol-regulatory element binding proteins-2 (SREBP-2) were analyzed by qPCR and Western blot. DiI-LDL was added to evaluated LDL uptake into HepG2. RESULTS: The results suggested that the mRNA and protein levels of PCSK9 were down-regulated by Gypenoside LVI and the LDLR degradation in lysosomes system was inhibited, thereby leading to an increasing in LDL uptake into HepG2 cells. Furthermore, Gypenoside LVI decreased PCSK9 expression induced by stains. Altogether, Gypenoside LVI enhances LDL uptake into HepG2 cells by increased LDLR level on cell-surface and suppressed PCSK9 expression. CONCLUSION: This indicates that Gypenoside LVI can be used as a useful supplement for statins in the treatment of hypercholesterolemia. This is firstly reported that monomeric compound of G. pentaphyllum planted in Hunan province has the effect of increasing LDL-C uptake in hepatocytes via inhibiting PCSK9 expression.


Assuntos
Gynostemma , Pró-Proteína Convertase 9 , Receptores de LDL/metabolismo , LDL-Colesterol , Gynostemma/química , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Extratos Vegetais/farmacologia , Pró-Proteína Convertase 9/metabolismo
9.
Fitoterapia ; 154: 105003, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34333032

RESUMO

Four new C-11 monosaccharide attached dammarane triterpenoid glycosides cypaliurusides SV (1-4), along with nine known dammarane triterpenoid glycosides (5-13) were isolated from a CHCl3-soluble extract of the leaves of Cyclocarya paliurus. All characterized compounds were assayed for their cytotoxicities against HepG2 cells and 10 compounds were evaluated for the agonistic effects on sirtuin1 (SIRT1). The results showed that compounds 1, 5 and 6 were strongly cytotoxic in HepG2 cell line. Two dammarane triterpenoid glycosides 3 and 10 exhibited agonistic activities on SIRT1 with IC50 of 10 µM and 20 µM, respectively.


Assuntos
Glicosídeos/farmacologia , Juglandaceae/química , Sirtuína 1/efeitos dos fármacos , Triterpenos/farmacologia , China , Glicosídeos/isolamento & purificação , Células Hep G2 , Humanos , Estrutura Molecular , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Folhas de Planta/química , Triterpenos/isolamento & purificação , Damaranos
10.
Phytomedicine ; 66: 153130, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31790897

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver diseases. Cyclocarya paliurus (C. paliurus), an edible and medicinal plant in Chinese folk, has been demonstrated to ameliorate diabetes, obesity and lipid metabolism disorders. However, its effects on NAFLD and its potential molecular mechanism have not been clearly expounded. PURPOSE: The present study was designed to explore the therapeutic potential of triterpenic acids-enriched fraction from C. paliurus (CPT), as well as its underlying mechanism in vivo and in vitro models of NAFLD. METHODS: The metabolic effects and possible molecular mechanism of CPT were examined using HepG2 cells and primary hepatocytes (isolated from C57BL/6 J mice) models of fatty liver induced by palmitic acid (PA) and a high fat diet mouse model. RESULTS: In high fat diet-induced C57BL/6 J mice, CPT significantly reduced liver weight index, serum alanine transaminase (ALT), aspartate transaminase (AST), triacylglycerol (TG), total cholesterol (TC) and hepatic TG, TC levels. Moreover, CPT dramatically decreased the contents of blood glucose, insulin, and insulin resistance (HOMA-IR) index. Meanwhile, CPT significantly increased the tyrosine phosphorylation level of IRS and the uptake of 2-deoxyglucose (2DG) in PA-induced HepG2 cells and primary hepatocytes fatty liver models. Furthermore, in PA-induced HepG2 cells and primary hepatocytes, CPT significantly decreased the number of lipid droplets and intracellular TG content. In addition, mechanism investigation showed that CPT increased the phosphorylation of phosphoinositide 3-kinase (PI3K), protein kinase B (Akt) and glycogen synthase-3ß (GSK3ß) in vivo and in vitro models, which were abrogated by PI3K inhibitor LY294002 in vitro models. CONCLUSION: These findings indicate that CPT may exert the therapeutic effects on NAFLD via regulating PI3K/Akt/GSK3ß pathway.


Assuntos
Juglandaceae/química , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Extratos Vegetais/farmacologia , Triterpenos/farmacologia , Animais , Glicemia/metabolismo , Dieta Hiperlipídica/efeitos adversos , Glicogênio Sintase Quinase 3 beta/metabolismo , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Extratos Vegetais/química , Plantas Medicinais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Triglicerídeos/metabolismo , Triterpenos/química
11.
Phytomedicine ; 64: 153060, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31401495

RESUMO

BACKGROUD: Diabetic nephropathy is the most serious complication of diabetes. Cyclocarya paliurus (CP), an herbal plant in China, has been reported the biological activity of anti-hyperglycemia. However, its effects on the diabetic nephropathy (DN) remain unclear. PURPOSE: We aimed to investigate the potential role of CP and its underlying mechanisms on DN. STUDY DESIGN: In this study, the effects of triterpenic acids-enriched fraction from CP (CPT) on DN was evaluated in streptozotocin (STZ)-induced rats and high glucose (HG)-induced HK-2 cells models. METHODS: After oral administration with or without CPT for 10 weeks, body weight, glucose, microalbumin, serum creatinine and blood urea in STZ-induced rats were detected. Histological analysis was performed to evaluate renal function of mice. Moreover, the level of autophagy was detected by western blot or immunostaining. In vitro, HG-induced HK-2 cell was conducted to evaluate the renal protection and mechanism of CPT. RESULTS: CPT dramatically decreased the levels of microalbumin, serum creatinine and blood urea nitrogen and ameliorated increased mesangial matrix and glomerular fibrosis. In addition, we found the CPT prevented renal damage and cell apoptosis through the autophagy. Furthermore, CPT could increase the phosphorylation of AMPK and decrease its downstream effector phosphorylation of mTOR. Besides, the expression of LC3-II were locked by AMPK inhibitor dorsomorphin dihydrochloride (compound C), implying that the autophagy may be regulated with AMPK activation. CONCLUSION: These findings suggested that CPT might be a desired candidate against diabetes, potentially through AMPK-mTOR-regulated autophagy pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Juglandaceae/química , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose/efeitos dos fármacos , Glicemia/análise , Creatinina/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/fisiopatologia , Nefropatias Diabéticas/induzido quimicamente , Nefropatias Diabéticas/fisiopatologia , Medicamentos de Ervas Chinesas , Rim/efeitos dos fármacos , Rim/fisiopatologia , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/fisiopatologia , Masculino , Camundongos , Fosforilação , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Estreptozocina/farmacologia
12.
Biomed Pharmacother ; 104: 229-239, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29775890

RESUMO

The effects of triterpenic acids-enriched fraction from Cyclocarya paliurus (CPT) on nonalcoholic fatty liver disease (NAFLD) were investigated using in vivo and in vitro models. In high fat diet-induced Wister rats, CPT significantly increased superoxide dismutase (SOD) activity and glutathione/oxidized glutathione (GSH/GSSG) ratio, reduced malondialdehyde (MDA) and protein carbonyl (PCO) levels. Moreover, CPT restored mitochondrial membrane potential dysfunction, decreased cytochrome P450 enzyme 2E1 (CYP2E1) activity, improved nuclear factor erythroid 2-related factor 2 (Nrf2) and Nrf2-mediated antioxidant enzyme heme oxygenase1 (HO-1) expression. In free fatty acids-induced HepG2 cells, CPT dramatically decreased ROS content, increased mitochondrial NADH dehydrogenase (Complex I) and mitochondrial cytochrome C oxidase (Complex IV) levels. Furthermore, CPT could upregulate HO-1, quinine oxidoreductase 1 (NQO1) expression, and increase Nrf2 translocation from cytoplasm-to-nucleus. The results indicated CPT could protect mitochondria function and improve oxidative stress by activating Nrf2. Therefore, it can be inferred that CPT may be a potential agent against NAFLD.


Assuntos
Juglandaceae/química , Mitocôndrias/efeitos dos fármacos , Doenças Mitocondriais/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Antioxidantes/metabolismo , Linhagem Celular Tumoral , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Heme Oxigenase-1/metabolismo , Células Hep G2 , Humanos , Masculino , Malondialdeído/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , NADH Desidrogenase/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
13.
Phytochemistry ; 151: 119-127, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29679877

RESUMO

Six undescribed pentacyclic triterpenoids including four triterpenoid aglycones, 1ß,2a,3ß,23-tetrahydroxyurs-12-en-28-ursolic acid, 2a,3a,6ß,19α,23-pentahydroxyurs-12-en-28-ursolic acid, 2α,3α,20ß,23-tetrahydroxyurs-12-en-28-ursolic acid and 1ß,2a,3ß,23-tetrahydroxyurs-12,20(30)-dien-28-ursolic acid, and two triterpenoid glucosides, 2a,3a,23-trihydroxy-12,20(30)-dien-28-ursolic acid 28-O-ß-d-glucopyranoside and 1-oxo-3ß,23-dihydroxyolean-12-en-28-oic acid 28-O-ß-d-xylopyranoside, along with 5 known triterpenoids were isolated from a CH3Cl-soluble extract of the leaves of Cyclocarya paliurus. Their structures were established on the basis of chemical and spectroscopic approaches. These compounds were assessed for their antioxidant effects on FFA-induced hepatic steatosis in HepG2 cells. The results revealed that three saponins and two aglycones markedly increased SOD activity and reduced MDA level.


Assuntos
Antioxidantes/farmacologia , Hepatócitos/efeitos dos fármacos , Juglandaceae/química , Triterpenos Pentacíclicos/farmacologia , Extratos Vegetais/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ácidos Graxos não Esterificados , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Conformação Molecular , Estresse Oxidativo/efeitos dos fármacos , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
14.
Phytochemistry ; 142: 76-84, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28688991

RESUMO

Five previously undescribed compounds including two triterpenoid aglycones, 3ß,23-dihydroxy-1,12-dioxo-olean-28-oic acid and 3ß,23,27-trihydroxy-1-oxo-olean-12-ene-28-oic acid, and three triterpenoid glucosides cyclocarioside L-N, along with 17 known compounds were isolated from a CH3Cl-soluble extract of the leaves of Cyclocarya paliurus. Two 27-nor-triterpenoid glycosides were isolated from the genus for the first time. Furthermore, the characterized compounds were tested for the inhibitory effects on apoliprotein B48 secretion in Caco-2 cells. Seven triterpenoid aglycones together with four triterpenoid saponins significantly decreased the apoliprotein B48 oversecretion induced by oleic acid in Caco-2 cells.


Assuntos
Apolipoproteína B-48/antagonistas & inibidores , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Juglandaceae/química , Triterpenos/isolamento & purificação , Triterpenos/farmacologia , Células CACO-2 , Medicamentos de Ervas Chinesas/química , Glicosídeos/química , Glicosídeos/isolamento & purificação , Humanos , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Ácido Oleico/farmacologia , Folhas de Planta/efeitos dos fármacos , Saponinas/química , Saponinas/isolamento & purificação , Saponinas/farmacologia , Triterpenos/química
15.
Phytomedicine ; 23(12): 1475-1483, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27765368

RESUMO

BACKGROUND: Hepatic steatosis (HS) is the early stage of nonalcoholic fatty liver disease which is caused by impaired hepatic lipid homeostasis. Cyclocarya paliurus, an herbal tea consumed in China, has been demonstrated to ameliorate abnormal lipid metabolism for the treatment of metabolic diseases. PURPOSE: We aimed to investigate the regulative effect of chloroform extract from Cyclocarya paliurus (ChE) on treatment of HS, as well as key factors involved in hepatic lipid metabolism. STUDY DESIGN: Sprague Dawley rats were fed with high-fat diet (HFD) for 6 weeks to induce HS and treated with or without ChE by gavage for 4 weeks. METHODS: The body weight, relative liver weight and liver fat content were measured. Serum and liver total cholesterol, triglyceride and non-esterified fatty acids, as well as hepatic malonaldehyde levels were accessed by biochemical methods. Serum and liver TNF-α levels were quantified by ELISA kit. Histologic analysis and 1H-MRS study were performed to evaluate HS level. RT-PCR and Western blot were also applied to observe the expression changes of key factors involved in hepatic lipid intake, synthesis, utilization and export. RESULTS: ChE significantly decreased the rats' body weight, serum lipid and TNF-α level. ChE also reduced their relative liver weight, liver fat content, hepatic oxidative products and TNF-α level. Hepatic steatosis in HFD-fed rats was effectively regressed after 2-weeks administration of ChE. Moreover, ChE treatment remarkably reduced HFD-induced high expression level of fatty acid synthesis genes (including sterol-regulatory element-binding protein 1, acetyl-CoA carboxylase 1 and fatty acid synthase). However, it had no effect on mRNA expression of some genes involved in lipid uptake, ß-oxidation and lipid outflow. CONCLUSION: ChE exerted a promising regression effect on HS due to a reduced level of serum non-esterified fatty acids which might lead to a decrease in the amount of lipid taken in by the liver, as well as owing to the inhibition of hepatic lipid de novo synthesis to reduce liver lipid production.


Assuntos
Dieta Hiperlipídica , Juglandaceae , Lipogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Acetil-CoA Carboxilase/metabolismo , Animais , China , Colesterol/sangue , Ácido Graxo Sintases/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Lipídeos/sangue , Fígado/metabolismo , Fígado/patologia , Masculino , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Ratos Sprague-Dawley , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Triglicerídeos/sangue , Fator de Necrose Tumoral alfa/metabolismo
16.
J Ethnopharmacol ; 194: 153-161, 2016 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-27616027

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Corydalis bungeana Turcz. (C. bungeana) is one of traditionally used medicines in China and possesses various biological effects, such as anti-inflammatory, antibacterial activity and inhibition of the immune function of the host. AIM OF THE STUDY: we studied the anti-inflammatory effect and molecular mechanism involved of C. bungeana both in vitro and in vivo model system in which the inflammatory response was induced by LPS treatment. MATERIALS AND METHODS: Anti-inflammatory activity of C. bungeana was investigated by LPS-induced RAW 264.7 macrophages and BALB/c mice. The production and expression of pro-inflammatory cytokines were evaluated by Griess reagent, ELISA kits and RT-qPCR, respectively. Phosphorylation status of IκBα and p65 was illustrated by western blot assay. RESULTS: C. bungeana reduced the secretion of NO, TNF-α, IL-6 and IL-1ß through inhibiting the protein expression of iNOS, TNF-α, IL-6 and IL-1ß in vitro and in vivo. Western blot analysis suggested that C. bungeana supressed NF-κB activation via regulating the phosphorylation of IκBα and p65. Immunohistochemical assay also demostrated the histological inflammatory change in liver tissue. CONCLUSIONS: The results indicate that C. bungeana supresses the activation of NF-κB signaling pathway through inhibiting phosphorylation of IκBα and p65, which results in good anti-inflammatory effect. In addition, C. bungeana attenuates inflammatory reaction by supressing the expression of various inflammatory cytokines both in vivo and in vitro.


Assuntos
Corydalis/química , Inflamação/prevenção & controle , Lipopolissacarídeos/toxicidade , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Citocinas/biossíntese , Citocinas/genética , Inflamação/induzido quimicamente , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação
17.
J Ethnopharmacol ; 183: 159-165, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-26806575

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Nauclea officinalis has been traditionally used in China for the treatment of fever, pneumonia and enteritidis etc. This study aims to investigate effects of N. officinalis on the inflammatory response as well as the possible molecular mechanism in LPS-stimulated RAW 264.7 murine macrophage cells. MATERIALS AND METHODS: Anti-inflammatory activity of N. officinalis (10, 20, 50, and 100µg/mL) was investigated by using LPS-induced RAW 264.7 macrophages. The NO production was determined by assaying nitrite in culture supernatants with the Griess reagent. The levels of TNF-α, IL-6 and IL-1ß in culture media were measured with ELISA kits. Real time fluorescence quantitative PCR was detected for mRNA expression of iNOS, TNF-α, IL-6 and IL-1ß. Western blot assay was performed to illustrate the inhibitory effects of N. officinalis on phosphorylation of IκB-α and NF-κB p65. RESULTS: Treatment with N. officinalis (10-100µg/mL) dose-dependently inhibited the production as well as mRNA expression of NO, TNF-α, IL-6 and IL-1ß in RAW 264.7 macrophages. Western blot assay suggested that the mechanism of the anti-inflammatory effect was associated with the inhibition of phosphorylation of IκB-α and NF-κB p65. CONCLUSIONS: The results indicated that N. officinalis potentially inhibited the activation of upstream mediator NF-κB signaling pathway via suppressing phosphorylation of IκB-α and NF-κB p65 to inhibit LPS-stimulated inflammation.


Assuntos
Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , NF-kappa B/metabolismo , Rubiaceae/química , Transdução de Sinais/efeitos dos fármacos , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Células Cultivadas , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Óxidos de Nitrogênio/metabolismo , Fitoterapia/métodos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...